# Copyright (c) Microsoft Corporation and contributors.
# Licensed under the MIT License.
import warnings
from collections import Iterable
from functools import reduce
from pathlib import Path
from typing import Any, List, Optional, Tuple, Union
import networkx as nx
import numpy as np
import pandas as pd
import scipy.sparse
from scipy.optimize import linear_sum_assignment
from scipy.sparse import csr_matrix, diags, isspmatrix_csr
from sklearn.metrics import confusion_matrix
from sklearn.utils import check_array, check_consistent_length, column_or_1d
from sklearn.utils.multiclass import type_of_target, unique_labels
[docs]def import_graph(graph, copy=True):
"""
A function for reading a graph and returning a shared data type.
Parameters
----------
graph: object
Either array-like, shape (n_vertices, n_vertices) numpy array,
a scipy.sparse.csr_matrix, or an object of type networkx.Graph.
copy: bool, (default=True)
Whether to return a copied version of array. If False and input is np.array,
the output returns the original input.
Returns
-------
out: array-like, shape (n_vertices, n_vertices)
A graph.
See Also
--------
networkx.Graph, numpy.array
"""
if isinstance(graph, (nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph)):
out = nx.to_numpy_array(graph, nodelist=sorted(graph.nodes), dtype=np.float)
elif isinstance(graph, (np.ndarray, np.memmap, csr_matrix)):
shape = graph.shape
if len(shape) > 3:
msg = "Input tensor must have at most 3 dimensions, not {}.".format(
len(shape)
)
raise ValueError(msg)
elif len(shape) == 3:
if shape[1] != shape[2]:
msg = "Input tensor must have same number of vertices."
raise ValueError(msg)
min_features = shape[1]
min_samples = 2
else:
min_features = np.max(shape)
min_samples = min_features
out = check_array(
graph,
dtype=[np.float64, np.float32],
accept_sparse=True,
ensure_2d=True,
allow_nd=True, # For omni tensor input
ensure_min_features=min_features,
ensure_min_samples=min_samples,
copy=copy,
)
else:
msg = "Input must be networkx.Graph, np.array, or scipy.sparse.csr_matrix,\
not {}.".format(
type(graph)
)
raise TypeError(msg)
return out
[docs]def import_edgelist(
path, extension="edgelist", delimiter=None, nodetype=int, return_vertices=False
):
"""
Function for reading a single or multiple edgelists. When importing multiple
edgelists, the union of vertices from all graphs is computed so that each output
graph have matched vertex set. The order of nodes are sorted by node values.
Parameters
----------
path : str, Path object, or iterable
If ``path`` is a directory, then the importing order will be sorted in
alphabetical order.
extension : str, optional
If ``path`` is a directory, then the function will convert all files
with matching extension.
delimiter : str or None, default=None, optional
Delimiter of edgelist. If None, the delimiter is whitespace.
nodetype : int (default), float, str, Python type, optional
Convert node data from strings to specified type.
return_vertices : bool, default=False, optional
Returns the union of all individual edgelists.
Returns
-------
out : list of array-like, or array-like, shape (n_vertices, n_vertices)
If ``path`` is a directory, a list of arrays is returned. If ``path`` is a file,
an array is returned.
vertices : array-like, shape (n_vertices, )
If ``return_vertices``` is True, then returns an array of all vertices that were
included in the output graphs.
"""
# p = Path(path)
if not isinstance(path, (str, Path, Iterable)):
msg = "path must be a string or Iterable, not {}".format(type(path))
raise TypeError(msg)
# get a list of files to import
if isinstance(path, (str, Path)):
p = Path(path)
if p.is_dir():
files = sorted(p.glob("*" + extension))
elif p.is_file():
files = [p]
else:
raise ValueError("No graphs founds to import.")
else: # path is an iterable
files = [Path(f) for f in path]
if len(files) == 0:
msg = "No files found with '{}' extension found.".format(extension)
raise ValueError(msg)
graphs = [
nx.read_weighted_edgelist(f, nodetype=nodetype, delimiter=delimiter)
for f in files
]
if all(len(G.nodes) == 0 for G in graphs):
msg = (
"All graphs have 0 vertices. Please double check if proper "
+ "'delimiter' is given."
)
warnings.warn(msg, UserWarning)
# Compute union of all vertices
vertices = np.sort(reduce(np.union1d, [G.nodes for G in graphs]))
out = [nx.to_numpy_array(G, nodelist=vertices, dtype=np.float) for G in graphs]
# only return adjacency matrix if input is only 1 graph
if len(out) == 1:
out = out[0]
if return_vertices:
return out, vertices
else:
return out
def is_symmetric(X):
return abs(X - X.T).sum() == 0
def is_loopless(X):
return not np.any(np.diag(X) != 0)
def is_unweighted(
graph: Union[
np.ndarray,
scipy.sparse.csr_matrix,
nx.Graph,
nx.DiGraph,
nx.MultiGraph,
nx.MultiDiGraph,
],
weight_attribute: Any = "weight",
):
"""
Attempts to determine if the provided graph is weighted.
Parameters
----------
graph : Union[np.ndarray, scipy.sparse.csr_matrix, nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDigraph]
The graph to test for weightedness. If a networkx graph, we can just ask it directly by querying the weight
attribute specified on every edge. It's possible an individual edge can be weighted but the full graph is not.
If an adjacency matrix defined by a numpy.ndarray or scipy.sparse.csr_matrix, we check every value; if
they are only 0 and 1, we claim the graph is unweighted.
weight_attribute : Any
Default is ``weight``. Only used for networkx, and used on the edge data dictionary as a key to look up the
weight.
Returns
-------
bool
True if unweighted, False if weighted
Raises
------
TypeError
If the provided graph is not a numpy.ndarray, scipy.sparse.csr_matrix, or nx.Graph
"""
if isinstance(graph, np.ndarray):
return ((graph == 0) | (graph == 1)).all()
elif isinstance(graph, csr_matrix):
# brute force. if anyone has a better way, please PR
rows, columns = graph.nonzero()
for i in range(0, len(rows)):
if graph[rows[i], columns[i]] != 1 or graph[rows[i], columns[i]] != 0:
return False
return True
elif isinstance(graph, nx.Graph):
return nx.is_weighted(graph, weight=weight_attribute)
else:
raise TypeError(
"This function only works on numpy.ndarray or scipy.sparse.csr_matrix instances"
)
def is_almost_symmetric(X, atol=1e-15):
return abs(X - X.T).max() <= atol
[docs]def symmetrize(graph, method="avg"):
"""
A function for forcing symmetry upon a graph.
Parameters
----------
graph: object
Either array-like, (n_vertices, n_vertices) numpy matrix,
or an object of type networkx.Graph.
method: {'avg' (default), 'triu', 'tril',}, optional
An option indicating which half of the edges to
retain when symmetrizing.
- 'avg'
Retain the average weight between the upper and lower
right triangle, of the adjacency matrix.
- 'triu'
Retain the upper right triangle.
- 'tril'
Retain the lower left triangle.
Returns
-------
graph: array-like, shape (n_vertices, n_vertices)
Graph with asymmetries removed.
Examples
--------
>>> a = np.array([
... [0, 1, 1],
... [0, 0, 1],
... [0, 0, 1]])
>>> symmetrize(a, method="triu")
array([[0, 1, 1],
[1, 0, 1],
[1, 1, 1]])
"""
# graph = import_graph(graph)
sparse = isspmatrix_csr(graph)
pac = scipy.sparse if sparse else np
if method == "triu":
graph = pac.triu(graph)
elif method == "tril":
graph = pac.tril(graph)
elif method == "avg":
graph = (pac.triu(graph) + pac.tril(graph)) / 2
else:
msg = "You have not passed a valid parameter for the method."
raise ValueError(msg)
dia = diags(graph.diagonal()) if sparse else np.diag(np.diag(graph))
graph = graph + graph.T - dia
return graph
[docs]def remove_loops(graph):
"""
A function to remove loops from a graph.
Parameters
----------
graph: object
Either array-like, (n_vertices, n_vertices) numpy matrix,
or an object of type networkx.Graph.
Returns
-------
graph: array-like, shape(n_vertices, n_vertices)
the graph with self-loops (edges between the same node) removed.
"""
graph = import_graph(graph)
dia = diags(graph.diagonal()) if isspmatrix_csr(graph) else np.diag(np.diag(graph))
graph = graph - dia
return graph
[docs]def to_laplace(graph, form="DAD", regularizer=None):
r"""
A function to convert graph adjacency matrix to graph Laplacian.
Currently supports I-DAD, DAD, and R-DAD Laplacians, where D is the diagonal
matrix of degrees of each node raised to the -1/2 power, I is the
identity matrix, and A is the adjacency matrix.
R-DAD is regularized Laplacian: where :math:`D_t = D + regularizer \times I`.
Parameters
----------
graph: object
Either array-like, (n_vertices, n_vertices) numpy array,
scipy.sparse.csr_matrix, or an object of type networkx.Graph.
form: {'I-DAD' (default), 'DAD', 'R-DAD'}, string, optional
- 'I-DAD'
Computes :math:`L = I - D_i A D_i`
- 'DAD'
Computes :math:`L = D_o A D_i`
- 'R-DAD'
Computes :math:`L = D_o^r A D_i^r`
where :math:`D_o^r = D_o + regularizer \times I` and likewise for :math:`D_i`
regularizer: int, float or None, optional (default=None)
Constant to add to the degree vector(s). If None, average node degree is added.
If int or float, must be >= 0. Only used when ``form`` is 'R-DAD'.
Returns
-------
L : numpy.ndarray
2D (n_vertices, n_vertices) array representing graph
Laplacian of specified form
References
----------
.. [1] Qin, Tai, and Karl Rohe. "Regularized spectral clustering
under the degree-corrected stochastic blockmodel." In Advances
in Neural Information Processing Systems, pp. 3120-3128. 2013
.. [2] Rohe, Karl, Tai Qin, and Bin Yu. "Co-clustering directed graphs to discover
asymmetries and directional communities." Proceedings of the National Academy
of Sciences 113.45 (2016): 12679-12684.
Examples
--------
>>> a = np.array([
... [0, 1, 1],
... [1, 0, 0],
... [1, 0, 0]])
>>> to_laplace(a, "DAD")
array([[0. , 0.70710678, 0.70710678],
[0.70710678, 0. , 0. ],
[0.70710678, 0. , 0. ]])
"""
valid_inputs = ["I-DAD", "DAD", "R-DAD"]
if form not in valid_inputs:
raise TypeError("Unsuported Laplacian normalization")
A = import_graph(graph)
in_degree = np.reshape(np.asarray(A.sum(axis=0)), (-1,))
out_degree = np.reshape(np.asarray(A.sum(axis=1)), (-1,))
# regularize laplacian with parameter
# set to average degree
if form == "R-DAD":
if regularizer is None:
regularizer = np.mean(out_degree)
elif not isinstance(regularizer, (int, float)):
raise TypeError(
"Regularizer must be a int or float, not {}".format(type(regularizer))
)
elif regularizer < 0:
raise ValueError("Regularizer must be greater than or equal to 0")
in_degree += regularizer
out_degree += regularizer
with np.errstate(divide="ignore"):
in_root = 1 / np.sqrt(in_degree) # this is 10x faster than ** -0.5
out_root = 1 / np.sqrt(out_degree)
diag = diags if isspmatrix_csr(graph) else np.diag
in_root[np.isinf(in_root)] = 0
out_root[np.isinf(out_root)] = 0
in_root = diag(in_root) # just change to sparse diag for sparse support
out_root = diag(out_root)
if form == "I-DAD":
L = diag(in_degree) - A
L = in_root @ L @ in_root
elif form == "DAD" or form == "R-DAD":
L = out_root @ A @ in_root
if is_symmetric(A):
return symmetrize(
L, method="avg"
) # sometimes machine prec. makes this necessary
return L
[docs]def is_fully_connected(graph):
r"""
Checks whether the input graph is fully connected in the undirected case
or weakly connected in the directed case.
Connected means one can get from any vertex :math:`u` to vertex :math:`v` by traversing
the graph. For a directed graph, weakly connected means that the graph
is connected after it is converted to an unweighted graph (ignore the
direction of each edge)
Parameters
----------
graph: nx.Graph, nx.DiGraph, nx.MultiDiGraph, nx.MultiGraph, np.ndarray
Input graph in any of the above specified formats. If np.ndarray,
interpreted as an :math:`n \times n` adjacency matrix
Returns
-------
boolean: True if the entire input graph is connected
References
----------
http://mathworld.wolfram.com/ConnectedGraph.html
http://mathworld.wolfram.com/WeaklyConnectedDigraph.html
Examples
--------
>>> a = np.array([
... [0, 1, 0],
... [1, 0, 0],
... [0, 0, 0]])
>>> is_fully_connected(a)
False
"""
if isinstance(graph, (np.ndarray, csr_matrix)):
if is_symmetric(graph):
g_object = nx.Graph()
else:
g_object = nx.DiGraph()
graph = nx.to_networkx_graph(graph, create_using=g_object)
if type(graph) in [nx.Graph, nx.MultiGraph]:
return nx.is_connected(graph)
elif type(graph) in [nx.DiGraph, nx.MultiDiGraph]:
return nx.is_weakly_connected(graph)
[docs]def get_lcc(graph, return_inds=False):
r"""
Finds the largest connected component for the input graph.
The largest connected component is the fully connected subgraph
which has the most nodes.
Parameters
----------
graph: nx.Graph, nx.DiGraph, nx.MultiDiGraph, nx.MultiGraph, np.ndarray
Input graph in any of the above specified formats. If np.ndarray,
interpreted as an :math:`n \times n` adjacency matrix
return_inds: boolean, default: False
Whether to return a np.ndarray containing the indices in the original
adjacency matrix that were kept and are now in the returned graph.
Ignored when input is networkx object
Returns
-------
graph: nx.Graph, nx.DiGraph, nx.MultiDiGraph, nx.MultiGraph, np.ndarray
New graph of the largest connected component of the input parameter.
inds: (optional)
Indices from the original adjacency matrix that were kept after taking
the largest connected component.
"""
input_ndarray = False
if type(graph) is np.ndarray:
input_ndarray = True
if is_symmetric(graph):
g_object = nx.Graph()
else:
g_object = nx.DiGraph()
graph = nx.from_numpy_array(graph, create_using=g_object)
if type(graph) in [nx.Graph, nx.MultiGraph]:
lcc_nodes = max(nx.connected_components(graph), key=len)
elif type(graph) in [nx.DiGraph, nx.MultiDiGraph]:
lcc_nodes = max(nx.weakly_connected_components(graph), key=len)
lcc = graph.subgraph(lcc_nodes).copy()
lcc.remove_nodes_from([n for n in lcc if n not in lcc_nodes])
if return_inds:
nodelist = np.array(list(lcc_nodes))
if input_ndarray:
lcc = nx.to_numpy_array(lcc)
if return_inds:
return lcc, nodelist
return lcc
[docs]def get_multigraph_union_lcc(graphs, return_inds=False):
r"""
Finds the union of all multiple graphs, then compute the largest connected
component.
Parameters
----------
graphs: list or np.ndarray
List of array-like, (n_vertices, n_vertices), or list of np.ndarray
nx.Graph, nx.DiGraph, nx.MultiDiGraph, nx.MultiGraph.
return_inds: boolean, default: False
Whether to return a np.ndarray containing the indices in the original
adjacency matrix that were kept and are now in the returned graph.
Ignored when input is networkx object
Returns
-------
out : list or np.ndarray
If input was a list
"""
if isinstance(graphs, list):
if not isinstance(graphs[0], np.ndarray):
raise NotImplementedError
out = [import_graph(g) for g in graphs]
if len(set(map(np.shape, out))) != 1:
msg = "All input graphs must have the same size"
raise ValueError(msg)
bar = np.stack(out).mean(axis=0)
elif isinstance(graphs, np.ndarray):
shape = graphs.shape
if shape[1] != shape[2]:
msg = "Input graphs must be square"
raise ValueError(msg)
bar = graphs.mean(axis=0)
else:
msg = "Expected list or np.ndarray, but got {} instead.".format(type(graphs))
raise ValueError(msg)
_, idx = get_lcc(bar, return_inds=True)
idx = np.array(idx)
if isinstance(graphs, np.ndarray):
graphs[:, idx[:, None], idx]
elif isinstance(graphs, list):
if isinstance(graphs[0], np.ndarray):
graphs = [g[idx[:, None], idx] for g in graphs]
if return_inds:
return graphs, idx
return graphs
[docs]def get_multigraph_intersect_lcc(graphs, return_inds=False):
r"""
Finds the intersection of multiple graphs's largest connected components.
Computes the largest connected component for each graph that was input, and
takes the intersection over all of these resulting graphs. Note that this
does not guarantee finding the largest graph where every node is shared among
all of the input graphs.
Parameters
----------
graphs: list or np.ndarray
if list, each element must be an :math:`n \times n` np.ndarray adjacency matrix
return_inds: boolean, default: False
Whether to return a np.ndarray containing the indices in the original
adjacency matrix that were kept and are now in the returned graph.
Ignored when input is networkx object
Returns
-------
graph: nx.Graph, nx.DiGraph, nx.MultiDiGraph, nx.MultiGraph, np.ndarray
New graph of the largest connected component of the input parameter.
inds: (optional)
Indices from the original adjacency matrix that were kept after taking
the largest connected component
"""
lcc_by_graph = []
inds_by_graph = []
for graph in graphs:
lcc, inds = get_lcc(graph, return_inds=True)
lcc_by_graph.append(lcc)
inds_by_graph.append(inds)
inds_intersection = reduce(np.intersect1d, inds_by_graph)
new_graphs = []
for graph in graphs:
if type(graph) is np.ndarray:
lcc = graph[inds_intersection, :][:, inds_intersection]
else:
lcc = graph.subgraph(inds_intersection).copy()
lcc.remove_nodes_from([n for n in lcc if n not in inds_intersection])
new_graphs.append(lcc)
# this is not guaranteed be connected after one iteration because taking the
# intersection of nodes among graphs can cause some components to become
# disconnected, so, we check for this and run again if necessary
recurse = False
for new_graph in new_graphs:
if not is_fully_connected(new_graph):
recurse = True
break
if recurse:
new_graphs, new_inds_intersection = get_multigraph_intersect_lcc(
new_graphs, return_inds=True
)
# new inds intersection are the indices of new_graph that were kept on recurse
# need to do this because indices could have shifted during recursion
if type(graphs[0]) is np.ndarray:
inds_intersection = inds_intersection[new_inds_intersection]
else:
inds_intersection = new_inds_intersection
if type(graphs) != list:
new_graphs = np.stack(new_graphs)
if return_inds:
return new_graphs, inds_intersection
else:
return new_graphs
[docs]def augment_diagonal(graph, weight=1):
r"""
Replaces the diagonal of an adjacency matrix with :math:`\frac{d}{nverts - 1}` where
:math:`d` is the degree vector for an unweighted graph and the sum of magnitude of
edge weights for each node for a weighted graph. For a directed graph the in/out
:math:`d` is averaged.
Parameters
----------
graph: nx.Graph, nx.DiGraph, nx.MultiDiGraph, nx.MultiGraph, np.ndarray,
scipy.scr_matrix.
Input graph in any of the above specified formats. If np.ndarray,
interpreted as an :math:`n \times n` adjacency matrix
weight: float/int
scalar value to multiply the new diagonal vector by
Returns
-------
graph : np.array
Adjacency matrix with average degrees added to the diagonal.
Examples
--------
>>> a = np.array([
... [0, 1, 1],
... [1, 0, 0],
... [1, 0, 0]])
>>> augment_diagonal(a)
array([[1. , 1. , 1. ],
[1. , 0.5, 0. ],
[1. , 0. , 0.5]])
"""
graph = import_graph(graph)
graph = remove_loops(graph)
divisor = graph.shape[0] - 1
in_degrees = np.squeeze(np.asarray(abs(graph).sum(axis=0)))
out_degrees = np.squeeze(np.asarray(abs(graph).sum(axis=1)))
degrees = (in_degrees + out_degrees) / 2
diag = weight * degrees / divisor
graph += diags(diag) if isspmatrix_csr(graph) else np.diag(diag)
return graph
def binarize(graph):
"""
Binarize the input adjacency matrix.
Parameters
----------
graph: nx.Graph, nx.DiGraph, nx.MultiDiGraph, nx.MultiGraph, np.ndarray
Input graph in any of the above specified formats. If np.ndarray,
interpreted as an :math:`n \times n` adjacency matrix
Returns
-------
graph : np.array
Adjacency matrix with all nonzero values transformed to one.
Examples
--------
>>> a = np.array([[0, 1, 2], [1, 0, 3], [2, 3, 0]])
>>> binarize(a)
array([[0., 1., 1.],
[1., 0., 1.],
[1., 1., 0.]])
"""
graph = import_graph(graph)
graph[graph != 0] = 1
return graph
def cartprod(*arrays):
"""
Compute the cartesian product of multiple arrays
"""
N = len(arrays)
return np.transpose(
np.meshgrid(*arrays, indexing="ij"), np.roll(np.arange(N + 1), -1)
).reshape(-1, N)
def fit_plug_in_variance_estimator(X):
"""
Takes in ASE of a graph and returns a function that estimates
the variance-covariance matrix at a given point using the
plug-in estimator from the RDPG Central Limit Theorem.
Parameters
----------
X : np.ndarray, shape (n, d)
adjacency spectral embedding of a graph
Returns
-------
plug_in_variance_estimtor: functions
a function that estimates variance (see below)
"""
n = len(X)
# precompute the Delta and the middle term matrix part
delta = 1 / (n) * (X.T @ X)
delta_inverse = np.linalg.inv(delta)
middle_term_matrix = np.einsum("bi,bo->bio", X, X)
def plug_in_variance_estimator(x):
"""
Takes in a point of a matrix of points in R^d and returns an
estimated covariance matrix for each of the points
Parameters:
-----------
x: np.ndarray, shape (n, d)
points to estimate variance at
if 1-dimensional - reshaped to (1, d)
Returns:
-------
covariances: np.ndarray, shape (n, d, d)
n estimated variance-covariance matrices of the points provided
"""
if x.ndim < 2:
x = x.reshape(1, -1)
# the following two lines are a properly vectorized version of
# middle_term = 0
# for i in range(n):
# middle_term += np.multiply.outer((x @ X[i] - (x @ X[i]) ** 2),
# np.outer(X[i], X[i]))
# where the matrix part does not involve x and has been computed above
middle_term_scalar = x @ X.T - (x @ X.T) ** 2
middle_term = np.tensordot(middle_term_scalar, middle_term_matrix, axes=1)
covariances = delta_inverse @ (middle_term / n) @ delta_inverse
return covariances
return plug_in_variance_estimator
def remove_vertices(graph, indices, return_removed=False):
"""
Remove a subgraph of adjacency vectors from an adjacency matrix, giving back the
truncated matrix and optionally the removed subgraph. Here, an adjacency vector
is the set of edge weights for a particular vertex.
Parameters
----------
graph: networkx.Graph or array-like, shape (n, n)
The adjacency matrix for some graph.
indices: int or array-like, length m
Index/indices of the adjacency vector(s) to be removed.
return_removed: bool, by default False (optional)
Whether to return the tuple ``(A, V)``,
where ``A`` is the truncated adjacency matrix,
``V`` is an array representing the removed subgraph.
Returns
-------
truncated_graph: np.ndarray
The truncated matrix.
This is a copy of `graph` of shape (k, k), with ``k=n-m``, without the ``m``
adjacency vectors given by `indices`.
removed_subgraph: np.ndarray or tuple, shape (m, k) (optional)
Array of removed adjacency vectors without edges to each other.
If directed, this is a tuple ``(V_1, V_2)``,
with ``V_1`` being an array of adjacency vectors from the removed subgraph to the truncated graph,
and ``V_2`` being an array of adjacency vectors from the truncated graph to the removed subgraph.
Examples
--------
# Undirected
>>> A = np.array([[0, 1, 2],
[1, 0, 3],
[2, 3, 0]])
>>> remove_vertices(A, 0)
array([[0., 3.],
[3., 0.]]))
>>> remove_vertices(A, 0, return_removed=True)
(array([[0., 3.],
[3., 0.]]),
array([1., 2.]))
# Directed
>>> B = np.array([[0, 1, 2, 3],
[4, 0, 5, 6],
[7, 8, 0, 9],
[10, 11, 12, 0]])
>>> remove_vertices(B, 0, return_removed=True)
(array([[ 0., 5., 6.],
[ 8., 0., 9.],
[11., 12., 0.]]),
(array([ 4., 7., 10.]), array([1., 2., 3.])))
>>> remove_vertices(B, [0, -1], return_removed=True)
(array([[0., 5.],
[8., 0.]]),
(array([[4., 7.],
[6., 9.]]),
array([[ 1., 2.],
[11., 12.]])))
"""
graph = import_graph(graph)
if isinstance(indices, list) and len(indices) >= len(graph):
raise IndexError("You must pass in fewer vertex indices than vertices.")
directed = not is_almost_symmetric(graph)
# truncate graph
mask = np.ones(graph.shape[0], dtype=bool)
mask[indices] = 0
A = graph[mask, :][:, mask]
if return_removed:
rows = graph[mask]
vertices = rows[:, indices].T
if directed:
cols = graph[:, mask]
vertices_right = cols[indices]
return A, (vertices, vertices_right)
return A, vertices
return A
[docs]def remap_labels(
y_true: Union[List, np.ndarray, pd.Series],
y_pred: Union[List, np.ndarray, pd.Series],
return_map: bool = False,
) -> np.ndarray:
"""
Remaps a categorical labeling (such as one predicted by a clustering algorithm) to
match the labels used by another similar labeling.
Given two :math:`n`-length vectors describing a categorical labeling of :math:`n`
samples, this method reorders the labels of the second vector (`y_pred`) so that as
many samples as possible from the two label vectors are in the same category.
Parameters
----------
y_true : array-like of shape (n_samples,)
Ground truth labels, or, labels to map to.
y_pred : array-like of shape (n_samples,)
Labels to remap to match the categorical labeling of `y_true`. The categorical
labeling of `y_pred` will be preserved exactly, but the labels used to
denote the categories will be changed to best match the categories used in
`y_true`.
return_map : bool, optional
Whether to return a dictionary where the keys are the original category labels
from `y_pred` and the values are the new category labels that they were mapped
to.
Returns
-------
remapped_y_pred : np.ndarray of shape (n_samples,)
Same categorical labeling as that of `y_pred`, but with the category labels
permuted to best match those of `y_true`.
label_map : dict
Mapping from the original labels of `y_pred` to the new labels which best
resemble those of `y_true`. Only returned if `return_map` was True.
Examples
--------
>>> y_true = np.array([0,0,1,1,2,2])
>>> y_pred = np.array([2,2,1,1,0,0])
>>> remap_labels(y_true, y_pred)
array([0, 0, 1, 1, 2, 2])
Notes
-----
This method will work well when the label vectors describe a somewhat similar
categorization of the data (as measured by metrics such as
:func:`sklearn.metrics.adjusted_rand_score`, for example). When the categorizations
are not similar, the remapping may not make sense (as such a remapping does not
exist).
For example, consider when one category in `y_true` is exactly split in half into
two categories in `y_pred`. If this is the case, it is impossible to say which of
the categories in `y_pred` match that original category from `y_true`.
"""
check_consistent_length(y_true, y_pred)
true_type = type_of_target(y_true)
pred_type = type_of_target(y_pred)
valid_target_types = {"binary", "multiclass"}
if (true_type not in valid_target_types) or (pred_type not in valid_target_types):
msg = "Elements of `y_true` and `y_pred` must represent a valid binary or "
msg += "multiclass labeling, see "
msg += "https://scikit-learn.org/stable/modules/generated/sklearn.utils.multiclass.type_of_target.html"
msg += " for more information."
raise ValueError(msg)
y_true = column_or_1d(y_true)
y_pred = column_or_1d(y_pred)
if not isinstance(return_map, bool):
raise TypeError("return_map must be of type bool.")
labels = unique_labels(y_true, y_pred)
confusion_mat = confusion_matrix(y_true, y_pred, labels=labels)
row_inds, col_inds = linear_sum_assignment(confusion_mat, maximize=True)
label_map = dict(zip(labels[col_inds], labels[row_inds]))
remapped_y_pred = np.vectorize(label_map.get)(y_pred)
if return_map:
return remapped_y_pred, label_map
else:
return remapped_y_pred
[docs]def to_weighted_edge_list(
graph: Union[
List[Tuple[Any, Any, Union[float, int]]],
nx.Graph,
nx.DiGraph,
nx.MultiGraph,
nx.MultiDiGraph,
np.ndarray,
scipy.sparse.csr_matrix,
],
is_directed: Optional[bool] = None,
is_weighted: Optional[bool] = None,
weight_attribute: Any = "weight",
weight_default: Optional[float] = None,
) -> List[Tuple[str, str, float]]:
"""
Creates a weighted edge list with string representations of the nodes and float
weights.
Parameters
----------
graph : Union[List[Tuple[Any, Any, Union[float, int]]], nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph, np.ndarray, scipy.sparse.csr_matrix]
A representation of a graph either as a list of tuples, a networkx graph, or an
adjacency matrix from numpy or scipy.sparse.csr_matrix
is_directed : Optional[bool]
Default is ``None``. Ignored if an edge tuple list or networkx graph is
provided, but can be used to short circuit an exhaustive matrix symmetry check
for numpy and scipy matrices.
is_weighted : Optional[bool]
Default is ``None``. Ignored if an edge tuple list or networkx graph is
provided, but can be used to short circuit an exhaustive matrix weight check for
numpy and scipy matrices.
weight_attribute : Any
Default is the string ``weight``. Used to retrieve the weight from networkx
edge attribute dictionary.
weight_default : Optional[float]
Default is ``None``. If given an unweighted graph, will use as a default weight
to output in the weighted edge list.
Raises
------
TypeError
If the graph is not a type we support
ValueError
If an adjacency matrix shape is not :math:`n x n`
If the weight attribute on a networkx graph is not a float
If the adjacency matrix is unweighted and a default weight is not set
Returns
-------
List[Tuple[str, str, float]]
A list of edges for the type of graph. Undirected graphs will only contain a
single entry for an edge between any two nodes.
"""
# if we're already an edge list of str, str, float, return it
if weight_default is not None and not isinstance(weight_default, (float, int)):
raise TypeError("weight default must be a float or int")
if isinstance(graph, list):
if len(graph) == 0:
return graph
if not isinstance(graph[0], tuple) or len(graph[0]) != 3:
raise TypeError(
"If the provided graph is a list, it must be a list of tuples with 3 "
"values in the form of Tuple[Any, Any, Union[int, float]], you provided"
f"{type(graph[0])}, {repr(graph[0])}"
)
return [
(str(source), str(target), float(weight))
for source, target, weight in graph
]
if isinstance(graph, nx.Graph):
# will catch all networkx graph types
try:
return [
(
str(source),
str(target),
float(data.get(weight_attribute, weight_default)),
)
for source, target, data in graph.edges(data=True)
]
except TypeError:
# None is returned for the weight if it doesn't exist and a weight_default
# is not set, which results in a TypeError when you call float(None)
raise ValueError(
f"The networkx graph provided did not contain a {weight_attribute} that"
" could be cast to float in one of the edges"
)
if isinstance(graph, (np.ndarray, csr_matrix)):
shape = graph.shape
if len(shape) != 2 or shape[0] != shape[1]:
raise ValueError(
"graphs of type np.ndarray or csr.sparse.csr.csr_matrix should be "
"adjacency matrices with n x n shape"
)
if is_weighted is None:
is_weighted = not is_unweighted(graph)
if not is_weighted and weight_default is None:
raise ValueError(
"the adjacency matrix provided is not weighted and a default weight has"
" not been set"
)
if is_directed is None:
is_directed = not is_almost_symmetric(graph)
edges = []
if isinstance(graph, np.ndarray):
for i in range(0, shape[0]):
start = i if not is_directed else 0
for j in range(start, shape[1]):
weight = graph[i][j]
if weight != 0:
if not is_weighted and weight == 1:
weight = weight_default
edges.append((str(i), str(j), float(weight)))
else:
edges = []
rows, columns = graph.nonzero()
for i in range(0, len(rows)):
row = rows[i]
column = columns[i]
if is_directed or (not is_directed and row <= column):
edges.append((str(row), str(column), float(graph[row, column])))
return edges
raise TypeError(
f"The type of graph provided {type(graph)} is not a list of 3-tuples, networkx "
f"graph, numpy.ndarray, or scipy.sparse.csr_matrix"
)
def suppress_common_warnings():
"""
Suppresses common warnings that occur when using graspologic.
"""
warnings.filterwarnings("ignore", category=RuntimeWarning)
warnings.filterwarnings("ignore", category=PendingDeprecationWarning)
warnings.simplefilter("always", category=UserWarning)