# Copyright (c) Microsoft Corporation and contributors.
# Licensed under the MIT License.
import warnings
import numpy as np
from ..utils import import_graph, is_fully_connected
from .base import BaseEmbedMulti
from scipy.sparse import isspmatrix_csr
def _get_omni_matrix(graphs):
"""
Helper function for creating the omnibus matrix.
Parameters
----------
graphs : list
List of array-like with shapes (n_vertices, n_vertices).
Returns
-------
out : 2d-array
Array of shape (n_vertices * n_graphs, n_vertices * n_graphs)
"""
shape = graphs[0].shape
n = shape[0] # number of vertices
m = len(graphs) # number of graphs
A = np.array(graphs, copy=False, ndmin=3)
# Do some numpy broadcasting magic.
# We do sum in 4d arrays and reduce to 2d array.
# Super fast and efficient
out = (A[:, :, None, :] + A.transpose(1, 0, 2)[None, :, :, :]).reshape(n * m, -1)
# Averaging
out /= 2
return out
[docs]class OmnibusEmbed(BaseEmbedMulti):
r"""
Omnibus embedding of arbitrary number of input graphs with matched vertex
sets.
Given :math:`A_1, A_2, ..., A_m` a collection of (possibly weighted) adjacency
matrices of a collection :math:`m` undirected graphs with matched vertices.
Then the :math:`(mn \times mn)` omnibus matrix, :math:`M`, has the subgraph where
:math:`M_{ij} = \frac{1}{2}(A_i + A_j)`. The omnibus matrix is then embedded
using adjacency spectral embedding.
Read more in the :ref:`tutorials <embed_tutorials>`
Parameters
----------
n_components : int or None, default = None
Desired dimensionality of output data. If "full",
``n_components`` must be ``<= min(X.shape)``. Otherwise, ``n_components`` must be
``< min(X.shape)``. If None, then optimal dimensions will be chosen by
:func:`~graspologic.embed.select_dimension` using ``n_elbows`` argument.
n_elbows : int, optional, default: 2
If ``n_components`` is None, then compute the optimal embedding dimension using
:func:`~graspologic.embed.select_dimension`. Otherwise, ignored.
algorithm : {'randomized' (default), 'full', 'truncated'}, optional
SVD solver to use:
- 'randomized'
Computes randomized svd using
:func:`sklearn.utils.extmath.randomized_svd`
- 'full'
Computes full svd using :func:`scipy.linalg.svd`
- 'truncated'
Computes truncated svd using :func:`scipy.sparse.linalg.svds`
n_iter : int, optional (default = 5)
Number of iterations for randomized SVD solver. Not used by 'full' or
'truncated'. The default is larger than the default in randomized_svd
to handle sparse matrices that may have large slowly decaying spectrum.
check_lcc : bool , optional (defult = True)
Whether to check if the average of all input graphs are connected. May result
in non-optimal results if the average graph is unconnected. If True and average
graph is unconnected, a UserWarning is thrown.
diag_aug : bool, optional (default = True)
Whether to replace the main diagonal of each adjacency matrices with
a vector corresponding to the degree (or sum of edge weights for a
weighted network) before embedding.
concat : bool, optional (default False)
If graph(s) are directed, whether to concatenate each graph's left and right (out and in) latent positions
along axis 1.
Attributes
----------
n_graphs_ : int
Number of graphs
n_vertices_ : int
Number of vertices in each graph
latent_left_ : array, shape (n_graphs, n_vertices, n_components)
Estimated left latent positions of the graph.
latent_right_ : array, shape (n_graphs, n_vertices, n_components), or None
Only computed when the graph is directed, or adjacency matrix is
asymmetric. Estimated right latent positions of the graph. Otherwise,
None.
singular_values_ : array, shape (n_components)
Singular values associated with the latent position matrices.
See Also
--------
graspologic.embed.selectSVD
graspologic.embed.select_dimension
References
----------
.. [1] Levin, K., Athreya, A., Tang, M., Lyzinski, V., & Priebe, C. E. (2017,
November). A central limit theorem for an omnibus embedding of multiple random
dot product graphs. In Data Mining Workshops (ICDMW), 2017 IEEE International
Conference on (pp. 964-967). IEEE.
"""
def __init__(
self,
n_components=None,
n_elbows=2,
algorithm="randomized",
n_iter=5,
check_lcc=True,
diag_aug=True,
concat=False,
):
super().__init__(
n_components=n_components,
n_elbows=n_elbows,
algorithm=algorithm,
n_iter=n_iter,
check_lcc=check_lcc,
diag_aug=diag_aug,
concat=concat,
)
[docs] def fit(self, graphs, y=None):
"""
Fit the model with graphs.
Parameters
----------
graphs : list of nx.Graph or ndarray, or ndarray
If list of nx.Graph, each Graph must contain same number of nodes.
If list of ndarray, each array must have shape (n_vertices, n_vertices).
If ndarray, then array must have shape (n_graphs, n_vertices, n_vertices).
Returns
-------
self : object
Returns an instance of self.
"""
if any([isspmatrix_csr(g) for g in graphs]):
msg = "OmnibusEmbed does not support scipy.sparse.csr_matrix inputs"
raise TypeError(msg)
graphs = self._check_input_graphs(graphs)
# Check if Abar is connected
if self.check_lcc:
if not is_fully_connected(np.mean(graphs, axis=0)):
msg = (
"Input graphs are not fully connected. Results may not"
+ "be optimal. You can compute the largest connected component by"
+ "using ``graspologic.utils.get_multigraph_union_lcc``."
)
warnings.warn(msg, UserWarning)
# Diag augment
if self.diag_aug:
graphs = self._diag_aug(graphs)
# Create omni matrix
omni_matrix = _get_omni_matrix(graphs)
# Embed
self._reduce_dim(omni_matrix)
# Reshape to tensor
self.latent_left_ = self.latent_left_.reshape(
self.n_graphs_, self.n_vertices_, -1
)
if self.latent_right_ is not None:
self.latent_right_ = self.latent_right_.reshape(
self.n_graphs_, self.n_vertices_, -1
)
return self